

Swing Injection Technique for CO₂ Storage and EOR

2nd Biennial CO₂ for EOR as CCUS Conference Houston, Texas, Oct. 4-6, 2015

B. Nazarian, A. Cavanagh, P.S. Ringrose, and B. Paasch Statoil Research Center, Trondheim, Norway

Background

Active plume management techniques

- Poor sweep
- Considerable CO₂ at top seal

- Improved sweep
- Less CO₂ at top seal

CO₂ Temperature Swing Injection (TSI) technique

CO₂ Composition Swing Injection (CSI) technique

Effect of CSI injection on plume size

- Swing Injection for storage
- Sleipner/Utsira analogue
- Injection rate: 1Mtpa
- Injection period: 30 years
- CSI cycle: 6 months
- 61% reduction in plume volume when CSI is used

6.7

13.5

0.0

Quantitative effect of active plume management

- Gravity number is reduced by more than 30% using CSI and TSI techniques
- CSI results in reduction of plume volume by around 61%
- At moderate low temperatures, heat dissipation reduces the effect of TSI in CO₂ storage

Case	Gravity number, N _{gv}	Plume volume, Rm ³
Constant composition injection	8.43 x 10 ⁻³	9.52 x 10 ¹⁰
CSI technique	5.64 x 10 ⁻³	3.51 x 10 ¹⁰
Percent difference	33.1	61.5
Constant temperature injection	7.21 x 10 ⁻³	2.02 x 10 ¹⁰
TSI technique	4.67 x 10 ⁻³	1.92 x 10 ¹⁰
Percent difference	35.2	5.0

Swing Injection for EOR

- North sea oil reservoir
- No initial gas-cap. The whole oil column is a transition zone
- Static properties improve at the top of the reservoir
- Challenging case for CO₂ due to segregation and early breakthrough
- Injection rate: 1 Mtpa
- Injection period: 38 years

Increased sweep efficiency by applying CSI

Statoil

Combined CSI and TSI for EOR using CO₂ – intermediates blend

- Composition and Temperature swing injection can be combined
- Low temperature improves miscibility and enhances properties
- Recovery from the combined CSI and TSI is around 10% more than common CO₂ EOR

Combined CSI and TSI for EOR using CO₂ – light HC blend

- Reduced temperature improves miscibility of CO₂ and light hydrocarbon blends
- 7% extra recovery @ 20 degC compared to common CO₂ EOR

Comparing saturation and temperature front movement

- Distance between the wells is 4000 m
- CO₂ breakthrough after around 2 years
- Temperature breakthrough after around 60 years

Effect of temperature on attic recovery near the producer

Conclusions

- The concept of Active Plume Management is applicable to both CO₂ storage and CO₂ EOR
- Swing injection techniques
 - CO₂ storage: Increased storage capacity by 60%
 - $CO_2 EOR$: Extra oil recovery by 10%
- In CO₂ storage Swing Injection controls the plume by density modification
- In CO₂ EOR Swing Injection works through viscosity modification and improved miscibility

There's never been a better time for **GOOD ideas**

Swing Injection for CCS and $CO_2 EOR$

Bamshad Nazarian

bna@statoil.com Tel: +47 48266527

www.statoil.com

Thank you for your attention

