2nd CCUS Conference, Houston, TX, Oct. 5, 2015

Microfluidic Approach for Carbon Sequestration

Myeongsub (Mike) Kim, Ph.D.

Assistant Professor Department of Ocean and Mechanical Engineering Florida Atlantic University

Microfluidics for Geological Research

□ CO₂-Bitumen in Single Channel

[Hossein, Energy&Fuel, 2013]

Oil displacement by water in micromodels

[Wu, Lab Chip, 2012]

- Visualize multiphase phenomena at realtime
- Model fluid flow at different surface wettability and heterogeneity

Carbon Storage - Issues

CO₂ Diffusion to Brine

□ CO₂ dissolution in water

$$CO_{2} (gas) \iff [CO_{2} (aq)] (1)$$

$$[CO_{2} (aq)] + H_{2}O \iff [H^{+} (aq)] + [HCO_{3}^{-} (aq)] (2)$$

$$[HCO_{3}^{-} (aq)] \iff [H^{+} (aq)] + [CO_{3}^{2^{-}} (aq)] (3)$$

□ CO₂ concentration

$$\stackrel{\acute{e}}{\underline{e}} CO_{2} (aq)_{\acute{U}}^{\grave{U}} = \frac{\stackrel{\acute{e}}{\underline{e}} H^{+} (aq)_{\acute{U}}^{\grave{U}^{3}} - K_{W \stackrel{\acute{e}}{\underline{e}}} H^{+} (aq)_{\acute{U}}^{\grave{U}}}{K_{2} (\stackrel{\acute{e}}{\underline{e}} H^{+} (aq)_{\acute{U}}^{\grave{U}} + 2K_{3})}$$

 K_2 , K_3 : dissolution constant in Eq. (2) & (3) K_w : dissolution constant for water

CO₂ Diffusion to Brine

ID diffusion - Fick's Law

$$C = c_0 \operatorname{erfc}(Z)$$
, where $Z = \left(\frac{Z}{(4Dt)^{1/2}} \right)$

$$\stackrel{i}{\underline{\psi}} = \underbrace{H^+(aq)_{\underline{U}}^{\underline{U}^3} - K_w \stackrel{e}{\underline{\psi}} H^+(aq)_{\underline{U}}^{\underline{U}}}_{K_2} \quad (\underline{e}^{\underline{\theta}} H^+(aq)_{\underline{U}}^{\underline{U}} + 2K_3)$$

CO₂ Diffusivity Test Setup

CO₂ Diffusivity Test Setup

Visualization of CO₂ Diffusion

Fluorescence-based imaging

Image Processing

Estimation of **D**

Results

□ Pressure effect on *D*

Contributions

Classical Pressure-Volume-Temperature Cell

10cm

Microfluidics

Cost: > \$ 100 K	< \$ 200
Volume: <i>O</i> (1 L)	<i>O</i> (nL)
Time: Few days	Minutes

Water Evaporation and Solid Precipitation

→□ CO₂ injection following salt precipitation

- Dry CO₂ injected (10⁶ ton/yr)
- Resident water evaporated from porous media
- Salt blocks pores/throats

Decrease of CO₂ Injectivity

Why important?

- Increase injection P
- Cost 1, Storage capacity ↓
- Induce fracture underground

Studies at Various Scale

Microfluidic Approach

Native porous media

Microfluidic chip

Porous Micromodels

Pore / Throat Distributions

Visualization and Quantification

□ Visualization (video frame = 50x faster)

\Box Transition time, τ

- **Before**: phase redistribution, evaporation, NO salt precip.
- After: salt precipitation occurs LINEARLY to 18% coverage
- Salt precipitation front velocity: 14 μm/s = 2% superficial vel. of CO₂ phase [Kim *et al.*, 2013]

Precipitation Mechanism

Exploded View (video frame = 50x faster)

Important Observations

- 1. Types of salt formation:
 - Early forming large crystals in "trapped" liquid-phase
 - Late forming poly-crystalline structures in gas-phase
 more significant formation type [Kim et al., 2013]
- 2. Driving force: highly concentrated film flow
- 3. Hydrophilic formations (*e.g.*, sandstone) might have higher precipitation

SEM Images of Precipitated Salt

Summary

Using microfluidic approaches,

□ Measure CO₂ diffusion coefficient in aqueous solutions

- Cheap, straightforward, and fast method
- Applicable to any combinations of gas-liquid systems

□ Visualize solid precipitation at real time during CO₂ injection

- Provide visual evidences of known phenomena at the same scale to natural formations
- Poly-crystalline structure precipitation has more significant effect
- Reveal new findings opposite to common understandings