The CCP Collaboration Project –
Phase 3 Results and Phase 4 Plans

Presented by Nigel Jenvey¹, CCP Chair

¹BP Group Technology

NorTex CO₂ EOR Symposium Meeting
5th October 2015
CCS is the only technology that could enable continued large-scale use of fossil fuels in a tightly carbon constrained world.
CCP4 “Advancing CCS technology deployment and knowledge for the oil and gas industry”

“Project Delivery Focus”

“Field/plant access for pilot/demo’s”

“Company Expert Collaboration”

“Mid TRL level technology development”

“Independent Verification of Cost and Performance”

“Global network of external partners”

“Technology Agnostic”

“Effectively managed and run”

CCP1
2000-2004
Screening/proof of concept

CCP2
2004-2009
Intensive development

CCP3
2009-2014
Demonstration phase

CCP4
2014-2019
Further Advancement
CCP3 Capture Program

Program Objective: Move CCS towards commercial deployment by
- Increasing technical and cost knowledge
- Development support for technologies to reduce CO₂ capture costs by 20-30%

Scenarios
- Refinery: FCC, heaters and boilers (H& Bs), SMR
- Heavy Oil: Once-through steam generators (OTSGs)
- NGCC

Approach
- Perform independent assessment of novel capture technologies
- Support lab, bench and pilot scale studies
- Carry out detailed economic assessment of select technologies

Results at a Glance
- 21 Technical Studies by Foster Wheeler
- 2 Demonstrations (oxy-fired FCC, oxy-fired OTSG)
- 4 bench/pilot projects (oxy-burner testing, Pd membrane, CLC, enzyme post-C)
- 1 pilot test post-C solvent screening program (EERC)
- 5 preliminary evaluations of novel technologies
- 24 in-house economic evaluations

Images courtesy of Petrobras and Cenovus Energy Inc.
CCP3 Storage Program

Program Objective: Verify Safe and Secure Storage by
- Verifying subsurface processes
- Risk assessment & economic analysis of storage

Approach
- Support lab, bench and pilot scale studies
- Carry out detailed desk-top studies and economic assessment

Results at a glance
- The Field Trialing effort laid out in 2009 was ambitious but accomplished with the exception of a microseismic trial.
- CCP3 began the first systematic approach to contingencies, ranging from modeling/simulation to experiments and a detailed bench/field test design.
- Subsurface processes studies involving experiments revealed phenomena that may be worth further investigation:

Successful diagnosis of pressure bleed off issue – i.e., DTS showed fluid influx above packer due to off depth perforations, not the MBM assembly (B Freifeld, LBNL & R Trautz, EPRI)
Program Objective: Inform the development of legal and policy frameworks through by

- Technical and economic insights
- Project experience of regulatory processes

Results at a Glance

- Local community benefit sharing Study, 2011 - Local community benefit sharing can help to address the potential imbalance between local costs vs. national or international benefits associated with some major developments
- Regulatory Study, 2012 – Update of regulatory issues facing CCS projects, documented lessons learned and found that pathways for approval do exist
Knowledge Sharing
www.co2captureproject.org

Conferences

Public engagement
www.ccsbrowser.com

- UNFCCC (Side events)
 - COP 16/17/18/19 in MX, ZA, QA, PL
- GHGT (Sponsor/Exhibitor/Presenter)
 - GHGT10/11/12 in USA, JP, NL
- CCUS Conference (Partner/Exhibitor/Presenter)
 - March 2009-2014 in Pittsburgh, PA
- CSLF (Recognized Project/Exhibitor/Presenter)
 - 4-7th November 2013 in Washington, DC
- CO2 Conference Week (Sponsor/Presenter)
 - December 2012-2014 in Midland, TX
Tactical Demonstration (short-medium term)
Capture: Incremental Improvement Technologies, NG Treating
SMV: Pilot/Demo scale of scientific fundamentals, Utilization
P&I: Regional Incentives & Global Regulations
Comms: Industry Knowledge Sharing

Strategic Deployment (medium-long term)
Capture: Breakthrough Technologies, NG Power/Cogen
SMV: Basin Scale Development and Operation
P&I: FOAK to NOAK Pathway
Comms: External Stakeholder Engagement

Advancing CCS
CCP Conclusions

• Post combustion capture technologies have seen some recent improvements, but what does the future look like versus alternatives, and will this achieve the end goal?

• There are some promising technology solutions to dramatically reduce capture costs & cost effectively verify safe/secure storage at scale, so R&D needs to continue

• CCP looks to build on its experience & expertise, welcome new partners and collaborate with others to ensure success
Questions?

CCP is the oil and gas industry’s answer to find & develop cost effective and sustainable CCS technologies

This presentation has been prepared for informational purposes only. All statements of opinion and/or belief contained in this document and all views expressed and all projections, forecasts or statements relating to expectations regarding future events represent the CCP’s own assessment and interpretation of information available to it as at the date of this document.