CO2 Injection for Methane Production from Hydrate Reservoirs

by

A. Graue, G. Ersland and S. Almenningen Dept. of Physics and Technology University of Bergen, NORWAY

2nd Biennial CO2 for EOR as CCUS Conf., Houston, TX, Oct. 4-6th, 2015

GAS HYDRATES

• Solid state of gas and water where the water molecules form a cavity that encapsulates the guest molecule.

The University of Bergen

Department of Physics and Technology

Why are hydrates of interest?

- Initial interest as a curiosity
- Plugging of production and transportation pipelines

Renewed interest

- Significant amount of energy
 - Permafrost regions
 - Marine environments (high water column)

Hydrate as Energy Resource

Ref.: Fire in the Ice, U.S. Department of Energy • Office of Fossil Energy • National Energy Technology Laboratory

Gas Hydrates Resource Pyramid (left). To the right is an example gas resources pyramid for all non-gas-hydrate resources.

Gas Hydrate Production Methods Inhibitor Injection Thermal Injection Depressurization Steam or Methanol **Hot Water** Gas Gas Gas Out Out Out CO₂ Flood Imperm. Rock Imperm. Rock **Hydrate** Cap Dissociated Dissociated **Hydrate Hydrate Hydrate** Dissociated **Hydrate** Hydrate **Free-Gas** Reservoir

Impermeable Rock

Impermeable Rock

Modified from "GAS HYDRATES OF NORTHERN ALASKA", January 2005

Evaluation of Alaska North Slope Gas Hydrate Energy Resources: A Cooperative Energy Resource Assessment Project US Bureau of Land Management, US Geological Survey, & State of Alaska Division of Geological and Geophysical Surveys

Bob Fisk, USBLM, Anchorage, Alaska, Tim Collett, USGS, Denver, Colorado & Jim Clough, DGGS, Fairbanks, Alaska

CH₄ PRODUCTION INDUCED BY CO₂ INJECTION

 Provides thermodynamically more stable gas hydrate than CH₄

GAS HYDRATE PRODUCTION METHODS

^oressure

- Move the gas hydrate outside its stability region
 - Depressurization
 - Thermal stimulation
 - Hydrate inhibitors
- CO2 exchange

The University of Bergen

Temperature

www.ift.uib.no

CO2 Exchange: Project Motivation

- The amount of energy bound in hydrates may be more than twice the world's total energy resources in conventional hydrocarbon reservoirs; i.e. oil-, gas- and coal reserves
- Simultaneous CO₂ Sequestration
- Win-win situation for gas production
- Need no hydrate melting or heat stimulation
- Spontaneous process
- No associated water production
- Formation integrity

The University of Bergen

CO2 storage in hydrates with associated methane gas production

Challenge:

Determine exchange mechanisms during potential sequestration of CO₂ to produce methane from hydrates

Three component Phase Field Theory

$$F = \int d\underline{r} \left\{ \frac{\varepsilon^2 T}{2} (\nabla \phi)^2 + \sum_{i,j=1}^3 \frac{\varepsilon_{i,j}^2 T}{4} (c_i \nabla c_j - c_j \nabla c_i)^2 + f_{bulk}(\phi, c_1, c_2, c_3, T) \right\}$$

$$f_{bulk} = wTg(\phi) + [1 - p(\phi)] f_S(c_1, c_2, c_3, T) + p(\phi) f_L(c_1, c_2, c_3, T)$$

$$\dot{\phi} = -M_{\phi} \frac{\delta F}{\delta c} + \zeta_{\phi}$$

$$\sum_{i=1}^3 c_i = 1$$

$$\dot{c}_i = \nabla M_{ci}(c_1, c_2, c_3) \nabla \left(\frac{\delta F}{\delta c_i} - \zeta_i\right)$$

Parameters ε and w can be fixed from the interface thickness and interface free energy. ε ij set equal to ε

<u>CO₂ Storage in Hydrate Reservoirs with Associated</u> Spontaneous Natural Gas Production

Arne Graue and Bjørn Kvamme, Dept. of Physics, University of Bergen, NORWAY Funding: ConocoPhillips, Statoil and The Research Council of Norway

Objectives:

Experimentally and theorethically determine spontaneous methane production when hydrate is exposed to CO2; with the purpose of CO2 sequestration.

Methane hydrate reservoirs

In-Situ imaging (MRI) of hydrate formation

Methane production by CO₂ injection in field test in Alaska 2012

lanik Sikumi #1

Prudhoe Bay Unit L-pad

Summary of Field Test (Injection Test)

Schedule:

Apr. 2011:Drilling test well (Complete)Nov. 2011:Finalizing parameters for the field testJan.-Apr. 2012: Field test

Location : Prudhoe Bay operating unit in Alaska, USA Operator : ConocoPhillips Company (COP), through its wholly owned subsidiary, ConocoPhillips Alaska, Inc. Investors : The United States Department of Energy (DOE) JOGMEC; Japan Oil, Gas and Metals National Corp.

lġnik Sikumi #1 Prudhoe Bay Unit L-pad

Gas Production from the Field Test

Ignik Sikumi #1 Flowback/Drawdown: Gas composition

STATUS

Alaska Field Injection Test 2011-2012

- ConocoPhillips and JOGMEC
- US\$ 11.6 mill funding from US DOE, total cost ca. US\$30mill
- CO2 injection

Core properties

- Bentheim sandstone cores
 - Porosity ~22%
 - Permeability ~1.1 Darcy
 - Grain density ~2.65 g/cm³
 - Mineralogy ~95% quartz

Experimental design

Hossainpour (2013)

Hydrate formation

- Pressure: 83 bar
- Temperature: 4.0 °C
- Initial brine salinity: 3.5 wt% (NaCl)
- Initial brine saturation: 0.69 [frac.]
- Final brine saturation: 0.31 [frac.]
- Final gas saturation: 0.20 [frac.]
- Final hydrate saturation: 0.49 [frac.]

CH₄-CO₂ exchange

Conclusion

 A binary mixture of 60% N₂ and 40% CO₂ [mole percent] was successfully injected into a hydrate-filled whole core containing excess water. The initial rate of methane recovery from hydrates was high but had a rapid decline.

How will the unconventional gas boom affect prices in other markets?

Average natural gas prices by region, May 2012

Unconventional gas boom will spur a degree of convergence in global prices by putting pressure on oil-price indexation of gas contracts in Europe & Asia

Thank you!

CONDITIONS OF A HYDRATE RESERVOIR

- Hydrate reservoirs are often found in porous media
 - Sedimentary rock

Experimental Setup

Core Sample Design

Bentheim Sandstone

20-25% porosity, ~1.1 D Perm

- Whole Core
- Longitudinal Cut With Machined Spacer to Simulate Open Fracture.

il.

33c-11

Core Halves Saturated with hydrate

9.1 hrs

20.6 hrs

32.0 hrs

43.4 hrs

54.9 hrs

. . .

Department of Physics and Technology

www.ift.uib.no

Methane Production

Thank you!