UNIVERSITY OF BERGEN

Department of Physics and Technology

Methane production from CO_2 injection in hydrates - CO_2 and CH_4 hydrate formation at pore scale

L.P. Hauge, Jarand Gauteplass, M. Høyland, A. Graue, G. Ersland, M. Fernø

CO₂ for EOR as CCUS, Rice University, October 4-6th 2015

Gas hydrate as energy source

- Vast amount of energy stored in natural gas hydrates
- Location
 - Permafrost regions
 - Deep sea continental shelves
- Production mechanisms
 - Pressure depletion
 - Thermal stimulation
 - Inhibitor injection
 - CO₂ injection

Source: http://www.theenergycollective.com/sbattaglia/200361/methane-hydrate-future-of-energy

Motivation

- Develop a new methodology to repeatedly form CO₂ and CH₄ hydrates in high pressure 2D porous medium
- Visualize and identify pore-level hydrate growth mechanisms
- Quantify hydrate growth rates in pore structures at reservoir conditions
- Provide an improved framework for fundamental studies of sediment-hosted gas hydrates

Laboratory setup

- High pressure

 Quizix SP-5200
 pump system
- Low temperature
 - Double chamber cooling system
- Dynamic imaging
 - Nikon SMZ 1500
 microscope body /
 Nikon D7100 camera
- Porous medium
 - HP silicon micromodel

HP Etched-silicon micromodel

- Based on Berea sandstone
- DRIE etching technique (depth 25 µm)
- Accurate and well-defined pore geometry
- High coordination number (>4)
- Net pressure 10 MPa (1450 psi)

System description

uib.no

Hydrate formation

Guest Molecule	T _{Initiation} [°C]	P [MPa]	Cycle	Induction time	Agitation
CO ₂	0.5	5.8	Primary	11 days	Pressure pulse
CH ₄	0.5	8.0	Primary	9 days	Pressure pulse
CH ₄	4.4	8.0	Secondary	2 hrs	Temp +/-

Hydrate growth rates

Dynamic hydrate distribution

Secondary Methane Hydrate Formation P=8 MPa, T=4.4C

Formation in gas-filled pores: Area 1/Figure 7 in article. Speed: 100%

Degree of subcooling

Secondary Methane Hydrate formation (P = 8 MPa), 100% Speed

5.1 Degree C

4.4 Degree C

Hydrates start forming in gas-filled pores, on the interface between gas and a water film coating the surfaces.

The newly formed hydrate surface acts as a growth site for further formation, resulting in a continous formation through clusters of gas-filled pores.

Hydrate growth is faster along the pore walls than towards the center of the pore.

Edited wing Waterlyhold, ware Witerlyhole biogen

Hydrate rearrangement

- Rearrangement into crystalline hydrate structure
- No hydrate formation in water-saturated pores

Conclusions

- HP silicon micromodel enables high spatial resolution imaging of CO₂ and CH₄ hydrate growth in realistic and well-defined pore structures
- Hydrate formation rate depends on local accessibility of water and gas and degree of subcooling. The average CH₄ hydrate growth rate (at 4.4°C):
 - Alongside the pore wall ~500 $\mu\text{m/s}$
 - Towards pore center ~7 $\mu m/s$

Conclusions

- Hydrate growth pattern is strongly coupled to the local fluid distribution and fluid connectivity within the pore network.
 - (1) A thin hydrate film growing widespread on the water/gas interfaces
 - (2) A thicker hydrate layer progressing along the pore wall and toward the pore center
 - (3) Rearrangement from agglomerated polycrystalline to crystalline hydrate structure occurring over several hours

UNIVERSITY OF BERGEN

Department of Physics and Technology

Additional

