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CO, injection for EOR

Present study part of an ongoing multi-scale approach

for mobility control in heterogeneous

and fractured reservoirs
during CO, EOR
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Supercritical CO, injection in Fractured Systems
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CO, Diffusion during Injection
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Development in oil saturation during CO, Injection

Oil saturation profiles
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Calculation of diffusion coefficient
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CO, EOR by diffusion at increasing length scales
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Observations

* Miscible CO, injection for EOR is an effective oll
recovery technology in laboratory floods in fractured
systems

« High oil recoveries were observed:
— 96 %OO0IP

 Diffusion main production mechanism in system with
open fracture

* Qil recovery iIs sensitive to system size

« Care should be taken when laboratory tests are used to
predict field performance where diffusion is a possible
production mechanism
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Can we use foam in fractured reservoirs?

« Large remaining reserves in heterogeneous carbonate
reservoirs. Many of these are heavily fractured

* Qil recovery low due to microscopic and macroscopic_-
low volumetric sweep efficiency

« Foam is a proven EOR technigue in heterogeneous
reservoirs — limited usage in fractured reservoirs

« Will foam be a viable option for mobility control in a
fractured reservoir?
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Scientific Outcome

e Scientific guestions investigated

a.

Can foam generate within the fracture network
itself?

How will foam generate with changes in flow rate
and gas fraction?

What it the best injection strategy for foam?
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Fracture Network — White Marble

Fracture white marble tile using ball-pen hammer
Rough-walled fracture surface
Surface tension equal to calcite

FRACTURE NETWORK A FRACTURE NETWORK B

1 foot
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FRACTURE NETWORK B
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MOBILITY CONTROL WITH FOAM

Surfactant + Gas

Surfactant alternating gas

Foam significantly improved
sweep and delayed gas
breakthrough compared with
pure gas injection

Time (min): 1
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Sector sweep efficiency — Fracture network A
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MOBILITY CONTROL WITH FOAM
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PET
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