CO₂ Foam Mobility Control and Adsorption with Nonionic Surfactant

Michael Guoqing Jian, Leyu Cui, Lisa Biswal, George Hirasaki 10/05/2015

Core Flood at Reservoir Conditions

 Composition of brine of East Seminole reservoir (TDS=34,180 ppm)

Na ₂ SO ₄	KCl	CaCl ₂ ·2 H ₂ O	MgCl ₂ ·6H ₂ O	NaCl
(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
5,236	458	5,825	2,760	22,796

Surfactant

Linear alcohol ethoxylates SURFONIC[®]L24-22

m=11~13; n=22

SURFONIC®L24-22, Huntsman Corporation

Core Flood at Reservoir Conditions

- Core
- Diameter: 1.50 inch
- Length: 2.97 inch
- Pore volume: 14.4 cm³

UNIIVERSI

- Lithology: Silurian dolomite core from Kocurek Industries
- Porosity=16.7%
- Permeability=91 mD

Diagram of the High Temperature and High Pressure Core Flooding Setup

- Specially designed heating coil, core holder and back pressure regulator system.
- ➢ Harsh Conditions: 2,600 psi, T=110 °F, moderate salinity and low pH (≈ 4)

Back Pressure Regulators (BPR) module

UNIVERSIT

Core flooding: Apparent Viscosity

Apparent viscosity is used to describe the foam strength, which is calculated by Darcy's law:

$$\mu_{app} = -\frac{\pi}{u_t} \cdot \nabla p$$

where μ_{app} is foam apparent viscosity, k is core permeability, u_t is the total superficial velocity and ∇p is the pressure gradient.

INIVERS

Core flooding

80% foam quality, Injection rate=4 ft/day, T=110 °F(43.3 °C), Injection pressure=2600 psi.

Equilibrium average apparent viscosity by co-injection of surfactant and CO₂ is 23 cp

UNIVERSI

- Depressurization from 1500 psi to 800 psi and then to 200 psi(at 20 °C), we saw a sudden increase of pressure drop(from 20 psi to 60 psi)
- Does the pressure drop indicate core plug?

- Permeability decreased from 91 mD to 8 mD
- Core was plugged

Confirm Plug of Core

 Plug has been partially flushed away which can be reflected from the permeability change

- Saturated Index* of anhydrite and gypsum was simulated by PHREEQC Software
- Negative Saturated index(SI) means under saturated and positive SI means oversaturated

- Anhydrite is under saturated from 14.7 psi to 3000 psi
- Gypsum is over saturated from 14.7 psi to 2800 psi, which indicates that depressurization is favorable for gypsum formation

*Lopez-Salinas, Jose Luis, George J. Hirasaki, and Clarence A. Miller. SPE141420

• The peaks with different heights correspond to different surfactant concentrations

Power Law Calibration Curve

Calibration Curve for L24_22 in ES brine (log10_log10 scale)

• Calibration curve could be used for determine surfactant concentration in adsorption test

Properties of Adsorbent RICE

Element composition of silurian dolomite

SEM of Silurian dolomite

- The Silurian dolomite are mainly consist of Ca, Mg; little amount of Al, Si
- BET surface area is 0.95 m2/g

Adsorption on RIC Silurian Dolomite Powder

Adsorption of L2422 on silurian dolomite in ES brine

• The equilibrium adsorption amount of L2422 on Silurian dolomite is ~0.08 mg/g

• Everything seems good till now,

foam could be generated at reservoir conditions with <u>23 cp</u> apparent viscosity and adsorption on Silurian dolomite is so low which is about <u>0.08mg/g [0.08mg/m2]</u> rock.

 How about adsorption at higher temperatures?

Adsorption without Na2SO3

Why is so high adsorption at high Temperature? (on Sciencelab dolomite)

Effect of temperature

Thermal decomposition is severe at 80°C but not at 43°C

UNIVERSITY

Thermal decomposition

 Thermal Decomposition is also severe at 43°C, if surfactant contacts with dolomite as pH increase from pH=6.2 to pH~=9.0

UNIVERSITY

Effect of temperature with 2M Na2SO3

No decomposition was found when 2M Na2SO3 was introduced at 43°C and 80°C

Adsorption (with 2M Na2SO3)

 For adsorption at 43°C and 80°C, the decomposition product of alcohol was not observed which indicate that decomposition was inhibited with 2M Na2SO3

Adsorption (with 2M Na2SO3)

Adsorption on 200+ mesh Sciencelab dolomite in 2M Na2SO3 DI water, 1atm air, 80°C

Adsorption increases with temperature increase, Γ<1mg/m2

- Using 1wt% L24_22 nonionic surfactant, Foam with apparent viscosity of 23 cp can be generated in Silurian dolomite core(80% foam quality, 4 ft/day injection rate, 110°F(43.3°C), pressure of 2600psi, reservoir brine)
- Gypsum can precipitate during depressurization at 20°C which was observed by experiment and simulation results from PHREEQC
- Adsorption on Silurian dolomite is as low as 0.08 mg/g

Conclusions

- L2422 gets thermal decomposition at high temperature in the presence of oxygen
- Adsorption of L2422 on Sciencelab dolomite increases with temperature at reducing environment(2M Na2SO3), Γ<1mg/m2 for temperature range investigated[20°C~43°C~80°C]

This work was financially supported by Department of Energy(DOE) and Rice consortium for processes in porous media

Thank you! Any questions?

Element analysis of dolomite

Two dolomite

absorbent	Diameter	BET surface	Source
Silurian	≤105 µm	0.95	Kocurek
Dolomite			Industries,
			silurian
			dolomite, Ohio,
			USA
Sciencelab	≤74 μm	0.89	Science
Dolomite			lab.com,
			Inc.(Catalog
			#SLD4477),USA

SEM of two dolomite

RICE

BET surface area of all absorbents

Absorbent	Diameter	BET surface area(m2/g)	Source
Silurian	≤105 µm	<mark>0.95</mark>	Kocurek Industries, silurian
Dolomite			dolomite, Ohio, USA
Sciencelab Dolomite	≤74 μm	<mark>0.89</mark>	Science lab.com, Inc.(Catalog
			#SLD4477),USA
Calcite	5 µm	<mark>1.65</mark>	Alfa
			Aesar(catalog#11403),USA
silica	≤ 10 µm	<mark>1.16</mark>	U.S.silica Company, Pacific,
			MO, USA
Kaolin	0.1-4 μm	<mark>26.61</mark>	Sigma-
			Aldrich(Catalog#K7375),USA

SEM Characterization of Adsorbent

Silurian dolomite

Sciencelab dolomite

Calcite

Silica

RICE

University

Kaolin

Effect of different dolomite RIC

- The equilibrium adsorption amount of L2422 on Silurian dolomite is 0.12 mg/m2 and 0.28 mg/m2 for sciencelab dolomite
- The difference may be caused by the different amount of silica and clay on dolomite surfaces

Effect of impurities in Carbonate materials

Adsorption of L2422 on 5μ m calcite in DI water, 1atm air, 20°C

 The equilibrium adsorption amount of L2422 on silica is 1.8 mg/m2 and 0.26mg/2 for Kaolin clay, which was caused by hydrogen bond formed; Below 0.05 mg/m2 for calcite

Universi

Effect of brine

- The adsorption of L2422 decreased from 0.12mg/m2 to 0.09mg/m2 for Silurian dolomite in the presence of ES brine
- The equilibrium plateau of adsorption amount of L2422 on sciencelab dolomite in ES brine is around 0.28mg/m2 which is almost the same as that in DI water environment

Effect of CO2

• The adsorption of L2422 was almost the same under the 1atm air and 1atm CO2, both at room temperature

Effect of Temperature

- The adsorption at 80°C are much higher than that under 20°C on calcite and silica
- Degradation beside of adsorption?

Universit

Decomposition

The thermal decomposition of L2422 under high temperature in oxidization environment

UNIVERSITY